These newly developed trees are following a path to commercialization set out by Greg Adams of GWA and Applied Biosciences Consulting, of Sussex, N.B., a forestry consultant hired with funding from Genome Atlantic’s Genomics Opportunity Review Program (GORP) to take SMART balsam fir to the next level.
Executive Director of the Christmas Tree Council of Nova Scotia Angus Bonnyman said, “thanks to the work that the consultant did, through the money from Genome Atlantic, along with money from the Christmas Tree Council of Nova Scotia, we think we have the right clones.”
SMART is an acronym for senescence modulated abscission regulating technology, developed by Dr. Rajasekaran Lada, founding director of the former Christmas Tree Research Centre, Truro, and Professor Emeritus, Department of Plant Food and Environmental Sciences, Dalhousie University.
Dr. Lada and his team developed 90 original genetic lines, or varieties, of SMART balsam, by selectively breeding for desired characteristics that are naturally occurring. Some of the resulting genetic lines were planted in Dalhousie’s Plumdale Orchard at the Agriculture Campus in Bible Hill and in three other sites in Nova Scotia. Not all of the lines made it to the cloning stage and for those that did, advanced testing was needed to determine which ones perform best in which soils and conditions, and the most promising lines had to be cloned in sufficient numbers for growers to buy. Those gaps are now being filled.
Jay Woodworth, Perennia Food and Agriculture Inc.’s Christmas Tree specialist, who oversees the Christmas Tree Council of Nova Scotia’s (CTCNS’S) research program, says for Phytocultures to produce clones via somatic embryogenesis, “selected genetic lines slated for cloning have to be removed from cryo-storage, and are encouraged to form an embryo, so that a germinate, or tiny tree, is produced within a petri dish.”
However, this procedure hasn’t been all smooth sailing. She said, “each individual line takes a little bit of tweaking to get it to grow up to the best of its ability in the lab setting.” As a result, she indicated, “only some of the lines have gone through the process to become trees, and even less of those have been planted out in the field setting to be tested in external conditions.” Before they reach the field, clones from Phytocultures spend about a year in the nursery at Scott & Stewart Forestry Consultants Ltd., Antigonish.
“We’re trying to focus now on which lines are the easiest to grow and which ones perform the best, once planted out in their intended environments,” explained Ms. Woodworth. So far, clones from more than 30 lines have been selected for field trials and have been performing well across Nova Scotia.
The first of 360 seedlings from the selected clone lines were planted in the fall of 2020 as part of a SMART tree three-year field evaluation, funded through the Canadian Agriculture Partnerships’ Crop & Livestock Management Trials program.
Phytocultures Laboratory supplied most of the seedlings with the remainder coming from Dalhousie University’s inventory. Nine evaluation sites were established, three in each of Nova Scotia’s active Christmas tree regions: Southwestern, Northeastern and Cobequid.
Each site has 44 trees planted across four rows in six-foot by six-foot spacing. Four control seedlings, conventionally produced and provided by Scott & Stewart Forestry Consultants were also included at each site for comparison purposes. The seedlings were tagged, pinpointed with GPS accuracy, and are seasonally evaluated.
Pre-dating that effort, and while SMART trees were in development at Dalhousie, select lines were field planted in more informal trials in 2015, and some of them are now four to five feet in height. These initial seedlings were incorporated nto the new rigorous evaluation process implemented in 2020 and they too are now tagged and GPS mapped. A total of 446 of these initial seedlings are growing in three Nova Scotia sites: St. Andrews, Onslow Mountain, and New Germany.